Computational Complexity of Perfect-Phylogeny-Related Haplotyping Problems

نویسندگان

  • Michael Elberfeld
  • Till Tantau
چکیده

Haplotyping, also known as haplotype phase prediction, is the problem of predicting likely haplotypes based on genotype data. This problem, which has strong practical applications, can be approached using both statistical as well as combinatorial methods. While the most direct combinatorial approach, maximum parsimony, leads to NP-complete problems, the perfect phylogeny model proposed by Gusfield yields a problem, called pph, that can be solved in polynomial (even linear) time. Even this may not be fast enough when the whole genome is studied, leading to the question of whether parallel algorithms can be used to solve the pph problem. In the present paper we answer this question affirmatively, but we also give lower complexity bounds on its complexity. In detail, we show that the problem lies in Mod2L, a subclass of the circuit complexity class NC, and is hard for logarithmic space and thus presumably not in NC. We also investigate variants of the pph problem that have been studied in the literature, like the perfect path phylogeny haplotyping problem and the combined problem where a perfect phylogeny of maximal parsimony is sought, and show that some of these variants are TC-complete or lie in AC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phylogeny- and Parsimony-Based Haplotype Inference with Constraints

Haplotyping, also known as haplotype phase prediction, is the problem of predicting likely haplotypes based on genotype data. One fast computational haplotyping method is based on an evolutionary model where a perfect phylogenetic tree is sought that explains the observed data. In their CPM’09 paper, Fellows et al. studied an extension of this approach that incorporates prior knowledge in the f...

متن کامل

Phylogeny- and Parsimony-Based Haplotype Inference with Constraints1

Haplotyping, also known as haplotype phase prediction, is the problem of predicting likely haplotypes based on genotype data. One fast computational haplotyping method is based on an evolutionary model where a perfect phylogenetic tree is sought that explains the observed data. An extension of this approach tries to incorporate prior knowledge in the form of a set of candidate haplotypes from w...

متن کامل

Haplotyping with missing data via perfect path phylogenies

Computational methods for inferring haplotype information from genotype data are used in studying the association between genomic variation and medical condition. Recently, Gusfield proposed a haplotype inference method that is based on perfect phylogeny principles. A fundamental problem arises when one tries to apply this approach in the presence of missing genotype data, which is common in pr...

متن کامل

Perfect Phylogeny Haplotyping is Complete for Logspace

Haplotyping is the bioinformatics problem of predicting likely haplotypes based on given genotypes. It can be approached using Gusfield’s perfect phylogeny haplotyping (PPH) method for which polynomial and linear time algorithms exist. These algorithm use sophisticated data structures or do a stepwise transformation of the genotype data into haplotype data and, therefore, need a linear amount o...

متن کامل

Perfect Path Phylogeny Haplotyping with Missing Data Is Fixed-Parameter Tractable

Haplotyping via perfect phylogeny is a method for retrieving haplotypes from genotypes. Fast algorithms are known for computing perfect phylogenies from complete and error-free input instances—these instances can be organized as a genotype matrix whose rows are the genotypes and whose columns are the single nucleotide polymorphisms under consideration. Unfortunately, in the more realistic setti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008